Communications to the Editor

Bromonium Ion Addition to Triruthenium and Triosmium Dodecacarbonyl: The Markedly Different Structures of the $\left[\mathrm{M}_{3}(\mathbf{C O})_{12}(\mathbf{B r})\right]^{+}(M=$ Ru, Os) Ions

Harpreet K. Nagra, Raymond J. Batchelor, Andrew J. Bennet,* Frederick W. B. Einstein, Edward C. Lathioor, Roland K. Pomeroy,* and Weibin Wang
Department of Chemistry, Simon Fraser University Burnaby, British Columbia, Canada V5A 1S6

Received September 20, 1995
Recently, Brown and co-workers reported the use of the bromonium ion of adamantylideneadamantane, as the triflate salt ([AdAdBr](OTf)), to transfer Br^{+}to acceptor olefins. ${ }^{1}$ On the other hand, work from this laboratory has shown that reaction of iodine with $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ proceeds via the $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12-}\right.$ $(\mathrm{I})]^{+}$cation, and it was suggested that bromination of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ proceeded through a similar intermediate. ${ }^{2}$ Here we report the use of the bromonium ion reagent to prepare the $\left[\mathrm{M}_{3}(\mathrm{CO})_{12^{-}}\right.$ $(\mathrm{Br})]^{+}(\mathrm{M}=\mathrm{Ru}, \mathrm{Os})$ ions and the determination of their crystal structures. These ions are the first halonium ions of metal carbonyl cluster compounds to be structurally characterized. The two cations have markedly different structures: the ruthenium derivative can be considered as an organometallic analogue of the bromonium ion of ethylene, $\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}\right]^{+}$, whereas the osmium cation can be thought of as the corresponding ion of cyclopropane, $\left[\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}\right]^{+}$. Furthermore, evidence is presented that the form of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}(\mathrm{Br})\right]^{+}$characterized here is not an intermediate in the bromination of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$.

Addition of $[\mathrm{AdAdBr}]\left\{\mathrm{B}\left[\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}\right\}^{3}$ to $\mathrm{M}_{3}(\mathrm{CO})_{12}(\mathrm{M}=$ Ru , Os) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at or below room temperature readily afforded $\left[\mathrm{M}_{3}(\mathrm{CO})_{12}(\mathrm{Br})\right]\left\{\mathrm{B}\left[\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}\right\}$, which on addition of hexane formed air-stable, red-orange $(M=R u)$ or pale yellow ($\mathrm{M}=\mathrm{Os}$) crystals. ${ }^{5}$ The structure of the ruthenium cation (1) as found in the X-ray structure determination of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12^{-}}\right.$ (Br) $]\left\{\mathrm{B}\left[\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}-3,5\right]_{4}\right\}^{6}$ is shown in Figure 1. It consists of a bent chain of three ruthenium atoms $(\operatorname{Ru}(1) \mathrm{Ru}(2) \mathrm{Ru}(3)=$ $\left.157.19(4)^{\circ}\right)$, one $\mathrm{Ru}-\mathrm{Ru}$ bond of which is bridged by the

[^0]

Figure 1. Molecular structure of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}(\mathrm{Br})\right]^{+}(\mathbf{1})$.

Figure 2. Molecular structure of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}(\mathrm{Br})\right]^{+}(\mathbf{2})$.
bromonium ion. The Ru atom not bound to the bromine atom has five carbonyls coordinated to it. The $\mathrm{Ru}(\mathrm{CO})_{5}$ moiety is therefore an 18 -electron species, and the metal-metal bond involving the Ru atom of this fragment is an unusual donoracceptor (dative) metal-metal bond. ${ }^{7}$ Cation 1 may therefore be considered as derived from $\left[\mathrm{Ru}_{2}(\mu-\mathrm{Br})(\mathrm{CO})_{8}\right]^{+}$in which one of the carbonyl ligands has been replaced by $\mathrm{Ru}(\mathrm{CO})_{5}$. Since $\mathrm{Ru}(\mathrm{CO})_{4}$ is isolobal with $\mathrm{CH}_{2},{ }^{8}$ the $\left[\mathrm{Ru}_{2}(\mu-\mathrm{Br})(\mathrm{CO})_{8}\right]^{+}$ion is an organometallic analogue of the classical bromonium ion of ethylene, $\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}\right]^{+}$. The $\mathrm{Ru}(\mu-\mathrm{Br}) \mathrm{Ru}$ unit in $\mathbf{1}$ may be considered as consisting of either a closed three-center, twoelectron RuBrRu bond, or two two-center, two-electron RuBr bonds, in each case augmented by a $\mathrm{Ru}-\mathrm{Ru}$ bond. The $\mathrm{Ru}-$ Ru bond length of the $\mathrm{Ru}(\mu-\mathrm{Br}) \mathrm{Ru}$ unit is short at $2.8067(14)$ A. In $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$, the average $\mathrm{Ru}-\mathrm{Ru}$ bond length is 2.8515 $\AA \AA^{9}$ in $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(\mathrm{Br})_{2}$, described below, it is $2.8823(4) \AA .{ }^{9}, 10$ The unbridged, dative $\mathrm{Ru}-\mathrm{Ru}$ bond in $\mathbf{1}$ is $2.8907(14) \AA$.

The structure (Figure 2) of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}(\mathrm{Br})\right]^{+}(\mathbf{2})$ as found in the $\mathrm{B}\left[\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}-3,5\right]_{4}{ }^{6}$ salt is very different from that of $\mathbf{1}$. The $\mathrm{Os}_{3} \mathrm{Br}$ unit in $\mathbf{2}$ is a nearly planar, four-membered ring with only two Os-Os bonds, which are 2.952(3) and 2.964(3) Å. In $\mathrm{Os}_{3}(\mathrm{CO})_{12}$, the average $\mathrm{Os}-\mathrm{Os}$ bond distance is $2.877 \AA \AA^{11}$ for $\mathrm{Os}_{3}(\mathrm{CO})_{12}(\mathrm{I})_{2}$, the $\mathrm{Os}-\mathrm{Os}$ bonds are crystallographically equiva-

[^1]lent, at $2.935(2) \AA .{ }^{12}$ The third $\mathrm{Os}-\mathrm{Os}$ vector in $\mathbf{2}$ is completely nonbonding, at $4.011(3) \AA$. Inasmuch as $\mathrm{Os}(\mathrm{CO})_{4}$ is isolobal with $\mathrm{CH}_{2},{ }^{8}$ the structure for $\mathbf{2}$ is a model for that of $\left[\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}\right]^{+}$, the bromonium ion adduct of cyclopropane. The structure of the latter cation is unknown, but the structure most favored does, indeed, have a configuration analogous to that found for $2 .{ }^{13}$

The ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}$ and $2\left({ }^{13} \mathrm{CO}\right.$-enriched samples) as the $\mathrm{B}\left[\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}$ salts in $\mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ indicate that the predominant form of each cation in solution has the same structure as found in the solid state, with rigid carbonyls. ${ }^{5}$ A freshly prepared sample of $\mathbf{1}$ at $-50{ }^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ exhibited four minor ${ }^{13} \mathrm{C}$ NMR resonances (at $\delta 196.3,192.9$, 188.1, and 173.7) attributed to the presence of a second form of 1 in solution. The spectrum was unchanged when a sample of $\mathbf{1}$ (from a different synthesis) had been allowed to stand in solution at room temperature before obtaining the low-temperature spectrum. In other words, the second species is not a transitory intermediate in the formation of $\mathbf{1}$. In the spectrum of $\mathbf{1}$ at $-20^{\circ} \mathrm{C}$, the minor peaks had collapsed to the base line, indicative of carbonyl exchange in the second isomer.

The first observable product (by ${ }^{13} \mathrm{C}$ NMR spectroscopy) in the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ with Br_{2} in $\mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -20 ${ }^{\circ} \mathrm{C}$ is cis, trans $-\mathrm{Os}_{3}(\mathrm{CO})_{12}(\mathrm{Br})_{2}(\mathbf{3}, \mathrm{M}=\mathrm{Os})$, which in solution at room temperature isomerizes over 3 h to the cis,cis isomer (4, $\mathrm{M}=\mathrm{Os}) .^{2}$ We now report that the first detectable product (by ${ }^{13} \mathrm{C}$ NMR spectroscopy) in the reaction of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with Br_{2} at $-50{ }^{\circ} \mathrm{C}$ is the previously unknown cis, cis $-\mathrm{Ru}_{3}(\mathrm{CO})_{12^{-}}$ $(\mathrm{Br})_{2}(\mathbf{4 R u})$. The identity of $\mathbf{4 R u}$ has been confirmed by a crystal structure determination. ${ }^{10}$

The product from the treatment of $\mathbf{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature with Br^{-}has not been positively identified, but it is not 4Ru. Furthermore, 2 under the same conditions immediately reacts with Br^{-}(or Br_{3}^{-}) to yield 40s (i.e., not 3Os). These results indicate, surprisingly, that the bromination of $\mathrm{Ru}_{3^{-}}$ $(\mathrm{CO})_{12}$ and $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ does not proceed via the respective

[^2]
solvent-equilibrated forms of $\left[\mathrm{M}_{3}(\mathrm{CO})_{12}(\mathrm{Br})\right]^{+}$characterized here (i.e., $\mathbf{1}$ and 2). This is in contrast to the reaction of $\mathrm{Os}_{3}-$ $(\mathrm{CO})_{12}$ with iodine, where ${ }^{13} \mathrm{C}$ NMR spectroscopy clearly indicates proceeds via $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}(\mathrm{I})\right]^{+}$(analogous to 2) to yield cis, cis- $\mathrm{Os}_{3}(\mathrm{CO})_{12}(\mathrm{I})_{2}$, analogous to 40s. Studies are in progress in an attempt to further elucidate the mechanism of the initial reaction of $\mathrm{M}_{3}(\mathrm{CO})_{12}$ with halogens, which is much more complex than had previously been thought. ${ }^{2}$

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

Supporting Information Available: Experimental details of the synthesis of $\mathbf{1} \cdot \mathrm{B}\left[\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}$ and $\mathbf{2} \cdot \mathrm{B}\left[\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}$ and tables of crystallographic data and positional and thermal parameters (14 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from ACS, and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions.

JA953220Z

[^0]: (1) (a) Brown, R. S.; Nagorski, R. W.; Bennet, A. J.; McClung, R. E D.; Aarts, G. H. M.; Klobukowski, M.; McDonald, R.; Santarsiero, B. D J. Am. Chem. Soc. 1994, 116, 2448. (b) Neverov, A. A.; Brown, R. S. Can. J. Chem. 1994, 72, 2540. (c) Bennet, A. J.; Brown, R. S.; McClung, R. E. D.; Klobukowski, M.; Aarts, G. H. M.; Santarsiero, B. D.; Bellucci, G.; Bianchini, R. J. Am. Chem. Soc. 1991, 113, 8532.
 (2) Sanati, H.; Becalska, A.; Ma, A. K.; Pomeroy, R. K. J. Chem. Soc., Chem. Сomтип. 1990, 197.
 (3) Prepared by metathesis of $[\mathrm{AdAdBr}][\mathrm{X}]\left(\mathrm{X}=\mathrm{Br}_{3}{ }^{-} \text {or } \mathrm{OTf}^{-}\right)^{1}$ and $\mathrm{Na}\left\{\mathrm{B}\left[\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}-3,5\right]\right\}^{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
 (4) Bahr, S. R.; Boudjouk, P. J. Org. Chem. 1992, 57, 5545.
 (5) $1 \cdot \mathrm{~B}\left[\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}$: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) v(\mathrm{CO}) 2165(\mathrm{vw}), 2137(\mathrm{~m}-\mathrm{s}), 2087$ (s), $2057(\mathrm{~m}) 2012(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1,-60{ }^{\circ} \mathrm{C}, \mathrm{CO}\right.$ region) $\delta 200.0(2 \mathrm{C}), 196.0(1 \mathrm{C}), 190.2$ (4C), 189.0 (2C), 187.9 (1C), 178.9 (1C), 175.8 (1C) (major isomer, see text). $\mathbf{2} \cdot \mathrm{B}\left[\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $v(\mathrm{CO}) 2138$ (s) 2099 (s) 2081 (vs) 2055 (m-s) 2023 (m) cm ${ }^{-1} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1,21{ }^{\circ} \mathrm{C}\right.$, CO region) $\delta 177.0$ (4C), 175.4 (2C), 167.6 (2C), $166.0(2 \mathrm{C}), 155.5(2 \mathrm{C})$ (very weak peaks at $\delta 180.8$ and 168.3 were also observed that may indicate traces of a second isomer.)
 (6) Crystal data for $\mathbf{1} \cdot \mathrm{B}\left[\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}$: formula $\mathrm{C}_{44} \mathrm{H}_{12} \mathrm{BBrF}_{24} \mathrm{O}_{12} \mathrm{Ru}_{3}$, $T=210 \mathrm{~K}$, triclinic, space group $P \overline{1}, a=11.655(2) \AA, b=11.952(3) \AA$, $c=19.640(6) \AA, \alpha=77.64(2)^{\circ}, \beta=89.51(2)^{\circ}, \gamma=87.15(2)^{\circ} ; V=2669.1$ $\AA^{3} ; Z=2 ; 601$ parameters; 4989 reflections with $I_{0}>2.5 \sigma\left(I_{\mathrm{o}}\right) ; R_{\mathrm{F}}=0.049$; $R_{\mathrm{wF}}=0.057$. Crystal data for $\mathbf{2} \cdot \mathrm{B}\left[\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}$: formula $\mathrm{C}_{44} \mathrm{H}_{12} \mathrm{BBrF}_{24} \mathrm{O}_{12}-$ $\mathrm{Os}_{3}, T=295 \mathrm{~K}$, triclinic, space group $P \mathrm{I}, a=10.880(2) \mathrm{A}, b=15.677$ (3) $\AA, c=17.226(3) \AA, \alpha=97.40(2)^{\circ}, \beta=100.34(2)^{\circ}, \gamma=103.80(2)^{\circ} ; V=$ $2761.3 \AA^{3} ; Z=2 ; 356$ parameters; 2870 reflections with $I_{0}>2.5 \sigma\left(I_{\mathrm{o}}\right) ; R_{\mathrm{F}}$ $=0.057 ; R_{\mathrm{wF}}=0.063$.

[^1]: (7) (a) Einstein, F. W. B.; Pomeroy, R. K.; Rushman, P.; Willis, A. C. J. Chem. Soc., Chem. Commun. 1983, 854. (b) Nakatsuji, H.; Hada, M.; Kawashima, A. Inorg. Chem. 1992, 31, 1740.
 (8) Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1982, 21, 711.
 (9) Churchill, M. R.; Hollander, F. J.; Hutchinson, J. P. Inorg. Chem. 1977, 16, 2655.
 (10) Batchelor, R. J.; Bennet, A. J.; Einstein, F. W. B.; Nagra, H. K.; Pomeroy, R. K. To be published.
 (11) Churchill, M. R.; DeBoer, B. G. Inorg. Chem. 1977, 16, 878.

[^2]: (12) Cook, N.; Smart, L.; Woodward, P. J. Chem. Soc., Dalton Trans. 1977, 1744.
 (13) Lambert, J. B.; Chelius, E. C.; Schulz, W. J.; Carpenter, N. E. J. Am. Chem. Soc. 1990, 112, 3156.

